
HashDist Documentation
Release 0.3

HashDist team

May 08, 2016

Contents

1 Working with HashDist 3

2 Developer Resources 13

Python Module Index 45

Python Module Index 47

i

ii

HashDist Documentation, Release 0.3

These documents are a work in progress. Some may be out of date. Please file an issue if the instructions appear to be
incorrect.

Contents 1

https://github.com/hashdist/hashdist/issues

HashDist Documentation, Release 0.3

2 Contents

CHAPTER 1

Working with HashDist

1.1 User’s guide to HashDist

1.1.1 Installing and making the hit tool available

HashDist requires Python 2.7 and git.

To start using HashDist, clone the repo that contains the core tool, and put the bin-directory in your PATH:

$ git clone https://github.com/hashdist/hashdist.git
$ cd hashdist
$ export PATH=$PWD/bin:$PATH

The hit tool should now be available. You should now run the following command to create the directory
~/.hashdist:

$ hit init-home

By default all built software and downloaded sources will be stored beneath ~/.hashdist. To change this, edit
~/.hashdist/config.yaml.

1.1.2 Setting up your software profile

Using HashDist is based on the following steps:

1. First, describe the software profile you want to build in a configuration file (“I want Python, NumPy, SciPy”).

2. Use a dedicated git repository to manage that configuration file

3. For every git commit, HashDist will be able to build the specified profile, and cache the results, so that you can
jump around in the history of your software profile.

Start with cloning a basic user profile template:

git clone https://github.com/hashdist/profile-template.git /path/to/myprofile

The contents of the repo is a single file default.yaml which a) selects a base profile to extend, and b) lists which
packages to include. It is also possible to override build parameters from this file, or link to extra package descriptions
within the repository (docs not written yet). The idea is to modify this repository to make changes to the software
profile that only applies to you. You are encouraged to submit pull requests against the base profile for changes that
may be useful to more users.

To build the stack, simply do:

3

HashDist Documentation, Release 0.3

cd /path/to/myprofile
hit build

This will take a while, including downloading the source code needed. In the end, a symlink default is created
which contains the exact software described by default.yaml.

Now, try to remove the jinja2 package from default.yaml and do hit build again. This time, the build
should only take a second, which is the time used to assemble a new profile.

Then, add the jinja2 package again and run hit build. This exact software profile was already built, and so the
operation is very fast.

When coupled with managing the profile specification with git, this becomes very powerful, as you can use git to
navigate the history of or branches of your software profile repository, and then instantly switch to pre-built versions.
[TODO: hit commit, hit checkout commands.]

If you want to have, e.g., release and debug profiles, you can create release.yaml and debug.yaml, and use
hit build release.yaml or hit build debug.yaml to select another profile than default.yaml to
build.

1.1.3 Garbage collection

HashDist does not have the concepts of “upgrade” or “uninstall”, but simply keeps everything it has downloaded or
built around forever. To free up disk space, you may invoke the garbage collector to remove unused builds.

Currently the garbage collection strategy is very simple: When you invoke garbage collection manually, HashDist
removes anything that isn’t currently in use. To figure out what that means, you may invoke hit gc --list;
continueing on the example from above, we would find:

$ hit gc --list
List of GC roots:
/path/to/myprofile/default

This indicates that if you run a plain hit gc, software accessible through /path/to/myprofile/default
will be kept, but all other builds will be removed from the HashDist store. To try it, you may comment out the zlib
line from default.yaml, then run hit build, and then hit gc – the zlib software is removed at the last step.

If you want to manipulate profile symlinks, you should use the hit cp, hit mv, and hit rm commands, so that
HashDist can correctly track the profile links. This is useful to keep multiple profiles around. E.g., if you first execute:

hit cp default old_profile

and then modify default.yaml, and then run hit build, then after the build default and old_profile
will point to different revisions of the software stacks, both usable at the same time. Garbage collection will keep
software for either around.

The database of GC roots is kept (by default) in ~/.hashdist/gcroots. You are free to put your own symlinks
there (you may give them an arbitrary name, as long as they do not contain an underscore in front), or manually remove
symlinks.

Warning: As a corollary to the description above, if you do a plain mv of a symlink to a profile, and then execute
hit gc, then the software profile may be deleted by HashDist.

1.1.4 Debug features

A couple of commands allow you to see what happens when building.

4 Chapter 1. Working with HashDist

HashDist Documentation, Release 0.3

• Show the script used to build Jinja2:

hit show script jinja2

• Show the “build spec” (low-level magic):

hit show buildspec jinja2

• Get a copy of the build directory that would be used:

hit bdir jinja2 bld

This extracts Jinja2 sources to bld, puts a Bash build-script in bld/_hashdist/build.sh. However, if you go
ahead and try to run it the environment will not be the same as when HashDist builds, so this is a bit limited so far.
[TODO: hit debug which also sets the right environment and sets the $ARTIFACT directory.]

1.1.5 Developing the base profile

If you want to develop the hashstack repository yourself, using a dedicated local-machine profile repo becomes
tedious. Instead, copy the default.example.yaml to default.yaml. Then simply run hit build directly
in the base profile (in which case the personal profile is not needed at all).

default.yaml is present in .gitignore and changes should not be checked in; you freely change it to exper-
iment with whatever package you are adding. Note the orthogonality between the two repositories: The base profile
repo has commits like “Added build commands for NumPy 1.7.2 to share to the world”. The personal profile repo has
commits like “Installed the NumPy package on my computer”.

1.1.6 Further details

Specifying a HashDist software profile

1.2 Specifying a HashDist software profile

There are specification file types in HashDist. The profile spec describes what to build; what packages should
be included in the profile and the options for each package. A package spec contains the how part: A (possibly
parametrized) description for building a single package.

The basic language of the specification files is YAML, see http://yaml.org. Style guide: For YAML files within the
HashDist project, we use 2 space indents, and no indent before vertically-formatted lists (as seen below).

1.2.1 Profile specification

The profile spec is what the user points the hit tool to to build a profile. By following references in it, HashDist should
be able to find all the information needed (including the package specification files). An example end-user profile
might look like this:

extends:
- name: hashstack

urls: ['https://github.com/hashdist/hashstack.git']
key: 'git:5042aeaaee9841575e56ad9f673ef1585c2f5a46'
file: debian.yaml

- file: common_settings.yaml

1.2. Specifying a HashDist software profile 5

http://yaml.org

HashDist Documentation, Release 0.3

parameters:
debug: false

packages:
zlib:
szlib:
nose:
python:
host: true

mpi:
use: openmpi

numpy:
skip: true

package_dirs:
- pkgs
- base

hook_import_dirs:
- base

extends:

Profiles that this profile should extend from. Essentially this profile is merged on a parameter-by-
parameter and package-by-package basis. If anything conflicts there is an error. E.g., if two base profiles
sets the same parameter, the parameter must be specified in the descendant profile, otherwise it is an error.

There are two ways of importing profiles:

• Local: Only provide the file key, which can be an absolute path, or relative to the directory of the
profile spec file.

• Remote: If urls (currently this must be a list of length one) and key are given, the specified sources
(usually a git commit) will be downloaded, and the given file is relative to the root of the repo. In this
case, providing a name for the repository is mandatory; the name is used to refer to the repository
in error messages etc., and must be unique for the repository across all imported profile files.

parameters:

Global parameters set for all packages. Any parameters specified in the packages section will override
these on a per-package basis.

Parameters are typed as is usual for YAML documents; variables will take the according Python types in
expressions/hooks. E.g., false shows up as False in expressions, while ’false’ is a string (evaluating
to True in a boolean context).

packages:

The packages to build. Each package is given as a key in a dict, with a sub-dict containing package-
specific parameters. This is potentially empty, which means “build this package with default parameters”.
If a package is not present in this section (and is not a dependency of other packages) it will not be built.
The use parameter makes use of a different package name for the package given, e.g., above, package
specs for openmpi will be searched and built to satisfy the mpi package. The skip parameter says that
a package should not be built (which is useful in the case that the package was included in an ancestor
profile).

package_dirs:

Directories to search for package specification files (and hooks, see section on Python hook files
below). These acts in an “overlay” manner. In the example above, if one e.g., if searching for

6 Chapter 1. Working with HashDist

HashDist Documentation, Release 0.3

python_package.yaml then first the pkgs sub-directory relative to the profile file will be consulted,
then base, and finally any directories listed in package_dirs in the base profiles extended in extends.

This way, one profile can override/replace the package specifications of another profile by listing a direc-
tory here.

The common case is that base profiles set package_dirs, but that overriding user profiles do not have it
set.

hook_import_dirs:

Entries for sys.path in Python hook files. Relative to the location of the profile file.

1.2.2 Package specifications

Below we assume that the directory pkgs is a directory listed in package_dirs in the profile spec. We can then use:

• Single-file spec: pkgs/mypkg.yaml

• Multi-file spec: pkgs/mypkg/mypkg.yaml, pkgs/mypkg/somepatch.diff,
pkgs/mypkg/mypkg-linux.yaml

In the latter case, all files matching mypkg/mypkg.yaml and mypkg/mypkg-*.yaml are loaded, and the when
clause evaluated for each file. An error is given if more than one file matches the given parameters. One of the files
may lack the when clause (conventionally, the one without a dash and a suffix), which corresponds to a default fallback
file.

Also, HashDist searches in the package directories for mypkg.py, which specifies a Python module with hook
functions that can further influence the build. Documentation for the Python hook system is TBD, and the API
tentative. Examples in base/autotools.py in the Hashstack repo.

Examples of package specs are in https://github.com/hashdist/hashstack, and we will not repeat them here, but simply
list documentation on each clause.

In strings; {{param_name}} will usually expand to the parameter in question while assembling the specification
needed, and are expanded before artifact hashes are computed. Expansions of the form ${FOO} are expanded at
build-time (by the HashDist build system or the shell, depending on context), and the variable name is what is hashed.

when:

Conditions for using this package spec, see rules above. It is a Python expression, evaluated in a context
where all parameters are available as variables

extends:

A list of package names. The package specs for these base packages will be loaded and their contents
included, as documented below.

sources:

Sources to download. This should be a list of key and url pairs. To generate the key for a new file, use
the hit fetch command.

dependencies:

Lists of names for packages needed during build (build sub-clause) or in the same profile (run sub-clause).
Dependencies from base packages are automatically included in these lists, e.g., if python_package
is listed in extends, then python_package.yaml may take care of requiring a build dependency on
Python.

build_stages:

1.2. Specifying a HashDist software profile 7

https://github.com/hashdist/hashstack

HashDist Documentation, Release 0.3

Stages for the build. See Stage system section below for general comments. The build stages are ordered
and then executed to produce a Bash script to run to do the build; the handler attribute (which defaults to
the value of the name attribute) determines the format of the rest of the stage.

when_build_dependency:

Environment variable changes to be done when this package is a build dependency for another package.
As a special case variable ${ARTIFACT}

profile_links:

A small DSL for setting up links when building the profile. What links should be created when assembling
a profile. (In general this is dark magic and subject to change until documented further, but usually only
required in base packages.)

1.2.3 Conditionals

The top-level when in each package spec has already been mentioned. In addition, there are two forms of local
conditionals withi a file. The first one can be used within a list-of-dicts, e.g., in build_stages and similar sections:

- when: platform == 'linux'
name: configure
extra: [--with-foo]

- when: platform == 'windows'
name: configure
extra: [--with-bar]

The second form takes the form of a more traditional if-test:

- name: configure
when platform == 'linux':

extra: [--with-foo]
when platform == 'windows':

extra: [--with-bar]
when platform not in ('linux', 'windows'):

extra: [--with-baz]

The syntax for conditional list-items is a bit awkward, but available if necesarry:

dependencies:
build:
- numpy
- when platform == 'linux': # ! note the dash in front

- openblas
- python

This will turn into either [numpy, python] or [numpy, openblas, python]. The “extra” - is needed to
maintain positioning within the YAML file.

1.2.4 Stage system

The build_stages, when_build_dependency and profile_links clauses all follow the same format: A list of “stages”
that are partially ordered (using name, before, and after attributes). Thus one can inherit a set of stages from the base
packages, and only override the stages one needs.

There’s a special mode attribute which determines how the override happens. E.g.,:

8 Chapter 1. Working with HashDist

HashDist Documentation, Release 0.3

- name: configure
mode: override # !!
foo: bar

will pass an extra foo: bar attribute to the configure handler, in addition to the attributes that were already there
in the base package. This is the default behaviour. On the other hand,:

- name: configure
mode: replace # !!
handler: bash
bash: |

./configure --prefix=${ARTIFACT}

entirely replaces the configure stage of the base package.

The update mode will update dictionaries and lists within a stage, so it can be helpful for building up a set of actions
for a given stage,:

- name: configure
append: {overriden_value: "1", a_key: "a"}
extra: ['--shared']

- name: configure
mode: update
append: {overriden_value: "2", b_key: "b"}
extra: ['--without-ensurepip']

is equivalent to,:

- name: configure
append: {overriden_value: "2", a_key: "a", b_key: "b"}
extra: ['--shared', '--without-ensurepip']

Finally,:

- name: configure
mode: remove # !!

removes the stage.

1.3 Guidelines for packaging/building

HashDist can be used to build software in many ways. This document describes what the HashDist authors recommend
and the helper tools available for post-processing.

1.3.1 Principles

• Build artifacts should be fully relocatable, simply because we can, and it is convenient. In particular it means
we can avoid adding complexity (an extra post-processing phase) for binary artifacts.

• It should be possible to use the software with as few environment variable modifications as possible. I.e., one
should be able to do path/to/profile/bin/program without any changes to environment variables at
all, and a typical setup would only modify $PATH.

1.3.2 Relocatable artifacts

Relocatability is something that must be dealt with on a case-by-case basis.

1.3. Guidelines for packaging/building 9

HashDist Documentation, Release 0.3

Artifact relative references

For relative artifacts to work (at least without serious patching of all programs involved...), it is currently nece-
sarry to insist that all build artifacts involved are in the sub-directory/partition, so that relative paths such as
../../../python/34ssdf32/lib/.. remain valid.

Note: Considering the future: If multiple artifact dirs are needed, a possibility for splitting up build artifact reposito-
ries would be to symlink between them at the individual artifact level, say:

/site/hit/zlib/afda/...
/site/hit/python/fdas/...

And then another artifact directory could contain:

/home/dagss/.hit/opt/zlib/afda -> /site/hit/zlib/afda
/home/dagss/.hit/opt/python/fdas -> /site/hit/python/fdas
/home/dagss/.hit/opt/pymypackage/3dfs/...

Because artifacts should be a DAG this should work well. This could be naturally implemented as whenever a cached
build artifact is found on a locally available filesystem, symlink to it.

Of course, now /site/hit is not relocatable, but mere rewriting of those symlinks, always at the same level in the
filesystem, is a lot more transparent than full post-processing of artifacts.

Unix: Scripts

The shebang lines #!/usr/bin/env interpreter or #!/full/path/to/interpreter are limited and
preclude relocatability by themselves. We deal with this by using multi-line shebangs.

We want to search for interpreters for scripts as follows:

• In the bin-dir of the profile in use (typically, but not always, along-side the script). We define this as: For
each symlink in the chain between $0 and the real script file, search upwards towards the root for a file named
profile.json. If found, find the interpreter (by its base name) in the bin-subdirectory.

• Otherwise, fall back to the relative path between the real location of the script file and the interpreter’s build
artifact. (E.g., for Python, this could work if PYTHONPATH is also set correctly, as may be the case during
builds.)

Example: The command:

$ hit build-postprocess --shebang=multiline path-or-script

applies the multiline shebang. Test script:

#!/tmp/../usr/bin/python

"""simple example"""

print 'Hello world'

Note that shebangs with /usr/bin/* is not processed, so we had to force the tool to kick in using
/tmp/../usr/bin/ (because the intention is really just to patch references to other artifacts). Then calling the
command above yields:

#!/bin/sh
-*- mode: python -*-
"true" '''\';r="../../../../usr/bin";i="python";o=`pwd`;p="$0";while true; do test -L "$p";il=$?;cd `dirname "$p"`;pdir=`pwd -P`;d="$pdir";while ["$d" != /]; do [-e profile.json]&&cd "$o"&&exec "$d/bin/$i" "$0" "$@";cd ..;d=`pwd -P`;done;cd "$pdir";if ["$il" -ne 0];then break;fi;p=`readlink $p`;done;cd "$r";p=`pwd -P`;cd "$o";exec "$p/$i" "$0" "$@";exit 127;

10 Chapter 1. Working with HashDist

http://rosettacode.org/wiki/Multiline_shebang

HashDist Documentation, Release 0.3

''' # end multi-line shebang, see hashdist.core.build_tools

__doc__ = """simple example"""

print 'Hello world'
vi: filetype=python

This file is executable both using Python 2.x or a POSIX shell. See the code of hashdist.core.build_tools
for the shell script in a non-compacted form with comments. Note the r and i variables; ../../../../usr/bin
was simply the relative path between the example script and /usr/bin when the command was run.

Unix: Dynamic libraries

Modern Unix platforms allows binaries to link to dynamic libraries in relative locations by using an RPATH containing
the string ${ORIGIN}. See man ld.so (on Linux at least).

Passing this is almost impossible because whenever one uses the configure system it tends to add the absolute RPATH
anyway. Also, the contortions one must go through to properly escape the magic string ($ unfortunately being part of
it) is build-system specific, for autoconf with libtool it is \$$ORIGIN, where first Make sees $$, and then Bash sees
\$.

Fortunately, for Linux there is patchelf and for Mac OS X [another tool].

1.3. Guidelines for packaging/building 11

http://nixos.org/patchelf.html

HashDist Documentation, Release 0.3

12 Chapter 1. Working with HashDist

CHAPTER 2

Developer Resources

2.1 Developers’s guide

2.1.1 Terminology

Distribution: An end-user software distribution that makes use of HashDist under the hood, e.g., python-hpcmp

Artifact: The result of a build process, identified by a hash of the inputs to the build

Profile: A “prefix” directory structure ready for use through $PATH, containing subdirectories bin, lib, and so on
with all/some of the software one wants to use.

Package: Used in the loose sense; a program/library, e.g., NumPy, Python etc.; what is not meant is a specific package
format like .spkg, .egg and so on (which is left undefined in the bottom two HashDist layers)

2.1.2 Design principles

• Many small components with one-way dependencies, accessible through command line and as libraries (initially
for Python, but in principle for more languages too).

• Protocols between components are designed so that one can imagine turning individual components into server
applications dealing with high loads.

• However, implementations of those protocols are currently kept as simple as possible.

• HashDist is a language-neutral solution; Python is the implementation language chosen but the core tools can
(in theory) be rewritten in C or Ruby without the users noticing any difference

• The components are accessible through a common hit command-line tool. This accesses both power-user
low-level features and the higher-level “varnish”, without implying any deep coupling between them (just like
git).

2.1.3 Powerusers’ guide, layer by layer

HashDist consists of two (eventually perhaps three) layers. The idea is to provide something useful for as many as
possible. If a distribution only uses the the core layer (or even only some of the components within it) it can keep on
mostly as before, but get a performance boost from the caching aspect. If the distribution wants to buy into the greater
HashDist vision, it can use the profile specification layer. Finally, for end-users, a final user-interface layer is needed
to make things friendly. Here HashDist will probably remain silent for some time, but some standards, best practices
and utilities may emerge. For now, a user interface ideas section is included below.

13

HashDist Documentation, Release 0.3

2.2 Build specifications and artifacts

2.2.1 The build spec (build.json)

The heart of HashDist are build specs, JSON documents that describes everything that goes into a build: the source
code to use, the build environment, the build commands.

A build artifact is the result of executing the instruction in the build spec. The build store is the collection of locally
available build artifacts.

The way the build store is queried is by using build specs as keys to look up software. E.g., take the following
build.json:

{
"name": "zlib",
"sources": [

{"key": "tar.gz:7kojzbry564mxdxv4toviu7ekv2r4hct", "target": ".", "strip": 1}
],
"build": {

"import": [
{"ref": "UNIX", "id": "virtual:unix"},
{"ref": "GCC", "id": gcc/gxuzlqihu4ok5obtxm5xt6pvi6a3gp5b"},

],
"commands": [

{"cmd": ["./configure", "--prefix=$ARTIFACT"]},
{"cmd": ["make", "install"]}

]
}

}

The artifact ID derived from this build specification is:

$ hit hash build.json
zlib/d4jwf2sb2g6glprsdqfdpcracwpzujwq

Let us check if it is already in the build store:

$ hit resolve build.json
(not built)

$ hit resolve -h zlib/d4jwf2sb2g6glprsdqfdpcracwpzujwq
(not built)

In the future, we hope to make it possible to automatically download build artifacts that are not already built. For now,
building from source is the only option, so let’s do that:

$ hit build -v build.json
...<output>...
/home/dagss/.hdist/opt/zlib/d4jw

The last line is the location of the corresponding build artifact, which can from this point of be looked up by the either
the build spec or the hash:

$ hit resolve build.json
/home/dagss/.hdist/opt/zlib/d4jw

$ hit resolve -h zlib/d4jwf2sb2g6glprsdqfdpcracwpzujwq
/home/dagss/.hdist/opt/zlib/d4jw

14 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

Note: Note that the intention is not that end-users write build.json files themselves; they are simply the API
for the build artifact store. It is the responsibility of distributions such as python-hpcmp to properly generate build
specifications for HashDist in a user-friendly manner.

2.2.2 Build artifacts

A build artifact contains the result of a build; usually as a prefix-style directory containing one library/program only,
i.e., typical subdirectories are bin, include, lib and so on. The build artifact should ideally be in a relocatable
form that can be moved around or packed and distributed to another computer (see Guidelines for packaging/building),
although HashDist does not enforce this.

A HashDist artifact ID has the form name/hash, e.g., zlib/4niostz3iktlg67najtxuwwgss5vl6k4. For
the artifact paths on disk, a shortened form (4-char hash) is used to make things more friendly to the human user. If
there is a collision, the length is simply increased for the one that comes later (see also Discussion).

Some information is present in every build artifact:

build.log.gz: The log from performing the build.

build.json: The input build spec.

artifact.json: Metadata about the build artifact itself. Some of this is simply copied over from build.json;
however, this is a separate file because parts of it could be generated as part of the build process. This is
important during Profile generation (docs TBD).

2.2.3 Build spec spec

The build spec document has the following top-level fields:

name: Used as the prefix in the artifact ID. Should match [a-zA-Z0-9-_+]+.

version: (Currently not used, but will become important for virtual build artifacts). Should match
[a-zA-Z0-9-_+]*.

build: A job to run to perform the build. See hashdist.core.run_job for the documentation of this sub-
document.

sources: Sources listed are unpacked to build directory; documentation for now in ‘hit unpack-sources’

profile_install: Copied to $ARTIFACT/artifact.json before the build.

import_modify_env: Copied to $ARTIFACT/artifact.json before the build.

2.2.4 The build environment

See hashdist.core.execute_job for information about how the build job is executed. In addition, the follow-
ing environment variables are set:

BUILD: Set to the build directory. This is also the starting cwd of each build command. This directory may be
removed after the build.

ARTIFACT: The location of the final artifact. Usually this is the “install location” and should, e.g., be passed as the
--prefix to ./configure-style scripts.

The build specification is available under $BUILD/build.json, and stdout and stderr are redirected to
$BUILD/build.log. These two files will also be present in $ARTIFACT after the build.

2.2. Build specifications and artifacts 15

HashDist Documentation, Release 0.3

2.2.5 Discussion

Safety of the shortened IDs

HashDist will never use these to resolve build artifacts, so collision problems come in two forms:

First, automatically finding the list of run-time dependencies from the build dependencies. In this case one scans the
artifact directory only for the build dependencies (less than hundred). It then makes sense to consider the chance of
finding one exact string aaa/0.0/ZXa3 in a random stream of 8-bit bytes, which helps collision strength a lot, with
chance “per byte” of collision on the order 2−(8·12) = 2−96 for this minimal example.

If this is deemed a problem (the above is too optimistice), one can also scan for “duplicates” (other artifacts where
longer hashes were chosen, since we know these).

The other problem can be future support for binary distribution of build artifacts, where you get pre-built artifacts
which have links to other artifacts embedded, and artifacts from multiple sources may collide. In this case it makes
sense to increase the hash lengths a bit since the birthday effect comes into play and since one only has 6 bits per byte.
However, the downloaded builds presumably will contain the full IDs, and so on can check if there is a conflict and
give an explicit error.

2.3 HashDist API reference

2.3.1 Important concepts

hashdist.core.source_cache — Source cache

The source cache makes sure that one doesn’t have to re-download source code from the net every time one wants
to rebuild. For consistency/simplicity, the software builder also requires that local sources are first “uploaded” to the
cache.

The software cache currently has explicit support for tarballs, git, and storing files as-is without metadata. A “source
item” (tarball, git commit, or set of files) is identified by a secure hash. The generic API in SourceCache.fetch()
and SourceCache.unpack() works by using such hashes as keys. The retrieval and unpacking methods are
determined by the key prefix:

sc.fetch('http://python.org/ftp/python/2.7.3/Python-2.7.3.tar.bz2',
'tar.bz2:ttjyphyfwphjdc563imtvhnn4x4pluh5')

sc.unpack('tar.bz2:ttjyphyfwphjdc563imtvhnn4x4pluh5', '/your/location/here')

sc.fetch('https://github.com/numpy/numpy.git',
'git:35dc14b0a59cf16be8ebdac04f7269ac455d5e43')

For cases where one doesn’t know the key up front one uses the key-retrieving API. This is typically done in interactive
settings to aid distribution/package developers:

key1 = sc.fetch_git('https://github.com/numpy/numpy.git', 'master')
key2 = sc.fetch_archive('http://python.org/ftp/python/2.7.3/Python-2.7.3.tar.bz2')

Features

• Re-downloading all the sources on each build gets old quickly...

• Native support for multiple retrieval mechanisms. This is important as one wants to use tarballs for slowly-
changing stable code, but VCS for quickly-changing code.

16 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

• Isolates dealing with various source code retrieval mechanisms from upper layers, who can simply pass along
two strings regardless of method.

• Safety: Hashes are re-checked on the fly while unpacking, to protect against corruption or tainting of the source
cache.

• Should be safe for multiple users to share a source cache directory on a shared file-system as long as all have
write access, though this may need some work with permissions.

Source keys

The keys for a given source item can be determined a priori. The rules are as follows:

Tarballs/archives: SHA-256, encoded in base64 using format_digest(). The prefix is currently either tar.gz
or tar.bz2.

Git commits: Identified by their (SHA-1) commits prefixed with git:.

Individual files or directories (“hit-pack”): A tarball hash is not deterministic from the file contents alone (there’s
metadata, compression, etc.). In order to hash build scripts etc. with hashes based on the contents alone, we
use a custom “archive format” as the basis of the hash stream. The format starts with the 8-byte magic string
“HDSTPCK1”, followed by each file sorted by their filename (potentially containing “/”). Each file is stored as

little-endian uint32_t length of filename
little-endian uint32_t length of contents
— filename (no terminating null)
— contents

This stream is then encoded like archives (SHA-256 in base-64), and prefixed with files: to get the key.

Module reference

class hashdist.core.source_cache.ProgressSpinner
Replacement for ProgressBar when we don’t know the file length.

Methods

class hashdist.core.source_cache.SourceCache(cache_path, logger, mirrors=(), cre-
ate_dirs=False)

Methods

static create_from_config(config, logger, create_dirs=False)
Creates a SourceCache from the settings in the configuration

fetch(*args, **kwargs)
Fetch sources whose key is known.

This is the method to use in automated settings. If the sources globally identified by key are already present
in the cache, the method returns immediately, otherwise it attempts to download the sources from url. How
to interpret the URL is determined by the prefix of key.

Parameters url : str or None

Location to download sources from. Exact meaning depends on prefix of key. If None
is passed, an exception is raised if the source object is not present.

2.3. HashDist API reference 17

HashDist Documentation, Release 0.3

key : str

Globally unique key for the source object.

repo_name : str or None

A unique ID for the source code repo; required for git and ignored otherwise. This must
be present because a git “project” is distributed and cannot be deduced from URL (and
pulling everything into the same repo was way too slow). Hopefully this can be mended
in the future.

fetch_archive(url, type=None)
Fetches a tarball without knowing the key up-front.

In automated settings, fetch() should be used instead.

Parameters url : str

Where to download archive from. Local files can be specified by prepending "file:"
to the path.

type : str (optional)

Type of archive, such as "tar.gz", "tar.gz2". For use when this cannot be deter-
mined from the suffix of the url.

fetch_git(repository, rev, repo_name)
Fetches source code from git repository

With this method one does not need to know a specific commit, but can use a generic git rev such as master
or revs/heads/master. In automated settings or if the commit hash is known exactly, fetch() should be
used instead.

Parameters repository : str

The repository URL (forwarded to git)

rev : str

The rev to download (forwarded to git)

repo_name : str

A unique name to use for the repository, e.g., numpy. This is currently required because
git doesn’t seem to allow getting a unique ID for a remote repo; and cloning all repos
into the same git repo has scalability issues.

Returns key : str

The globally unique key; this is the git commit SHA-1 hash prepended by git:.

put(files)
Put in-memory contents into the source cache.

Parameters files : dict or list of (filename, contents)

The contents of the archive. filename may contain forward slashes / as path separators.
contents is a pure bytes objects which will be dumped directly to stream.

Returns key : str

The resulting key, it has the files: prefix.

unpack(key, target_path)
Unpacks the sources identified by key to target_path

18 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

The sources are verified against their secure hash to guard against corruption/security problems. Corrupt-
SourceCacheError will be raised in this case. In normal circumstances this should never happen.

The archive will be loaded into memory, checked against the hash, and then extracted from the memory
copy, so that attacks through tampering with on-disk archives should not be possible.

Parameters key : str

The source item key/secure hash

target_path : str

Path to extract in

class hashdist.core.source_cache.TarSubprocessHandler(logger)
Call external tar

This handler should only be used as fallback, it lacks some features and/or depends on the vagueries of the host
tar.

Methods

hashdist.core.source_cache.hit_pack(files, stream=None)
Packs the given files in the “hit-pack” format documented above, and returns the resulting key. This is useful to
hash a set of files solely by their contents, not metadata, except the filename.

Parameters files : list of (filename, contents)

The contents of the archive. filename may contain forward slashes / as path separators.
contents is a pure bytes objects which will be dumped directly to stream.

stream : file-like (optional)

Result of the packing, or None if one only wishes to know the hash.

Returns The key of the resulting pack :

(e.g., ‘‘files:cmRX4RyxU63D9Ciq8ZAfxWGjdMMOXn2mdCwHQqM4Zjw‘‘). :

hashdist.core.source_cache.hit_unpack(stream, key)
Unpacks the files in the “hit-pack” format documented above, verifies that it matches the given key, and returns
the contents (in memory).

Parameters stream : file-like

Stream to read the pack from

key : str

Result from hit_pack().

Returns list of (filename, contents) :

hashdist.core.source_cache.scatter_files(files, target_dir)
Given a list of filenames and their contents, write them to the file system.

Will not overwrite files (raises an OSError(errno.EEXIST)).

This is typically used together with hit_unpack().

Parameters files : list of (filename, contents)

target_dir : str

Filesystem location to emit the files to

2.3. HashDist API reference 19

HashDist Documentation, Release 0.3

hashdist.core.build_store — Build artifact store

Principles

The build store is the very core of HashDist: Producing build artifacts identified by hash-IDs. It’s important to have a
clear picture of just what the build store is responsible for and not.

Nix takes a pure approach where an artifact hash is guaranteed to identify the resulting binaries (up to anything
inherently random in the build process, like garbage left by compilers). In contrast, HashDist takes a much more
lenient approach where the strictness is configurable. The primary goal of HashDist is to make life simpler by reliably
triggering rebuilds when software components are updated, not total control of the environment (in which case Nix is
likely the better option).

The only concern of the build store is managing the result of a build. So the declared dependencies in the build-spec
are not the same as “package dependencies” found in higher-level distributions; for instance, if a pure Python package
has a NumPy dependency, this should not be declared in the build-spec because NumPy is not needed during the build;
indeed, the installation can happen in parallel.

Artifact IDs

A HashDist artifact ID has the form name/hash, e.g., zlib/4niostz3iktlg67najtxuwwgss5vl6k4.

For the artifact paths on disk, a shortened form (4-char hash) is used to make things more friendly to the human user.
If there is a collision, the length is simply increased for the one that comes later. Thus, the example above could be
stored on disk as ~/.hit/opt/zlib/4nio, or ~/.hit/opt/zlib/1.2.7/4nios in the (rather unlikely)
case of a collision. There is a symlink from the full ID to the shortened form. See also Discussion below.

Build specifications and inferring artifact IDs

The fundamental object of the build store is the JSON build specification. If you know the build spec, you know the
artifact ID, since the latter is the hash of the former. The key is that both dependencies and sources are specified in
terms of their hashes.

An example build spec:

{
"name" : "<name of piece of software>",
"description": "<what makes this build special>",
"build": {

"import" : [
{"ref": "bash", "id": "virtual:bash"},
{"ref": "make", "id": "virtual:gnu-make/3+"},
{"ref": "zlib", "id": "zlib/1.2.7/fXHu+8dcqmREfXaz+ixMkh2LQbvIKlHf+rtl5HEfgmU"},
{"ref": "unix", "id": "virtual:unix"},
{"ref": "gcc", "id": "gcc/host-4.6.3/q0VSL7JmzH1P17meqITYc4kMbnIjIexrWPdlAlqPn3s", "before": ["virtual:unix"]},

],
"commands" : [

{"cmd": ["bash", "build.sh"]}
],

},
"sources" : [

{"key": "git:c5ccca92c5f136833ad85614feb2aa4f5bd8b7c3"},
{"key": "tar.bz2:RB1JbykVljxdvL07mN60y9V9BVCruWRky2FpK2QCCow", "target": "sources"},
{"key": "files:5fcANXHsmjPpukSffBZF913JEnMwzcCoysn-RZEX7cM"}

],
}

20 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

name: Should match [a-zA-Z0-9-_+]+.

version: Should match [a-zA-Z0-9-_+]*.

build: A job to run to perform the build. See hashdist.core.run_job for the documentation of this sub-
document.

sources: Sources are unpacked; documentation for now in ‘hit unpack-sources’

The build environment

See hashdist.core.execute_job for information about how the build job is executed. In addition, the follow-
ing environment variables are set:

BUILD: Set to the build directory. This is also the starting cwd of each build command. This directory may be
removed after the build.

ARTIFACT: The location of the final artifact. Usually this is the “install location” and should, e.g., be passed as the
--prefix to ./configure-style scripts.

The build specification is available under $BUILD/build.json, and stdout and stderr are redirected to
$BUILD/_hashdist/build.log. These two files will also be present in $ARTIFACT after the build.

Build artifact storage format

The presence of the ‘id’ file signals that the build is complete, and contains the full 256-bit hash.

More TODO.

Reference

class hashdist.core.build_store.BuildSpec(build_spec)
Wraps the document corresponding to a build.json

The document is wrapped in order to a) signal that is has been canonicalized, b) make the artifact id available
under the artifact_id attribute.

class hashdist.core.build_store.BuildStore(temp_build_dir, artifact_root, gc_roots_dir, log-
ger, create_dirs=False)

Manages the directory of build artifacts; this is usually the entry point for kicking off builds as well.

Parameters temp_build_dir : str

Directory to use for temporary builds (these may be removed or linger depending on
keep_build passed to ensure_present()).

artifact_root : str

Root of artifacts, this will be prepended to artifact_path_pattern with os.path.join.
While this could be part of artifact_path_pattern, the meaning is that garbage collection
will never remove contents outside of this directory.

gc_roots_dir : str

Directory of symlinks to symlinks to artifacts. Artifacts reached through these will not
be collected in garbage collection.

logger : Logger

2.3. HashDist API reference 21

HashDist Documentation, Release 0.3

Methods

static create_from_config(config, logger, **kw)
Creates a SourceCache from the settings in the configuration

create_symlink_to_artifact(artifact_id, symlink_target)
Creates a symlink to an artifact (usually a ‘profile’)

The symlink can be placed anywhere the users wants to access it. In addition to the symlink being created,
it is listed in gc_roots.

The symlink will be created atomically, any target file/symlink will be overwritten.

delete(artifact_id)
Deletes an artifact ID from the store. This is simply an rmtree, i.e., it is (at least currently) possible to
delete an aborted build, a build in progress etc., as long as it is present in the right path.

This is the backend of the hit purge command.

Returns the path that was removed, or None if no path was present.

ensure_present(build_spec, config, extra_env=None, virtuals=None, keep_build=’never’, de-
bug=False)

Builds an artifact (if it is not already present).

extra_env: dict (optional) Extra environment variables to pass to the build environment. These are NOT
hashed!

gc()
Run garbage collection, removing any unneeded artifacts.

For now, this doesn’t care about virtual dependencies. They’re not used at the moment of writing this; it
would have to be revisited in the future.

make_artifact_dir(build_spec)
Makes a directory to put the result of the artifact build in. This does not register the artifact in the db
(which should be done after the artifact is complete).

make_build_dir(build_spec)
Creates a temporary build directory

Just to get a nicer name than mkdtemp would. The caller is responsible for removal.

resolve(artifact_id)
Given an artifact_id, resolve the short path for it, or return None if the artifact isn’t built.

hashdist.core.build_store.assert_safe_name(x)
Raises a ValueError if x does not match [a-zA-Z0-9-_+]+.

Returns x

hashdist.core.build_store.canonicalize_build_spec(spec)
Puts the build spec on a canonical form + basic validation

See module documentation for information on the build specification.

Parameters spec : json-like

The build specification

Returns canonical_spec : json-like

Canonicalized and verified build spec

22 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

hashdist.core.build_store.shorten_artifact_id(artifact_id, length=12)
Shortens the hash part of the artifact_id to the desired length

hashdist.core.build_store.strip_comments(spec)
Strips a build spec (which should be in canonical format) of comments that should not affect hash

hashdist.core.build_store.unpack_sources(logger, source_cache, doc, target_dir)
Executes source unpacking from ‘sources’ section in build.json

hashdist.core.run_job — Job execution in controlled environment

Executes a set of commands in a controlled environment, determined by a JSON job specification. This is used as the
“build” section of build.json, the “install” section of artifact.json, and so on.

The job spec may not completely specify the job environment because it is usually a building block of other specs
which may imply certain additional environment variables. E.g., during a build, $ARTIFACT and $BUILD are defined
even if they are never mentioned here.

Job specification

The job spec is a document that contains what’s needed to set up a controlled environment and run the commands.
The idea is to be able to reproduce a job run, and hash the job spec. Example:

{
"import" : [

{"ref": "BASH", "id": "virtual:bash"},
{"ref": "MAKE", "id": "virtual:gnu-make/3+"},
{"ref": "ZLIB", "id": "zlib/2d4kh7hw4uvml67q7npltyaau5xmn4pc"},
{"ref": "UNIX", "id": "virtual:unix"},
{"ref": "GCC", "id": "gcc/jonykztnjeqm7bxurpjuttsprphbooqt"}

],
"commands" : [

{"chdir": "src"},
{"prepend_path": "FOOPATH", "value": "$ARTIFACT/bin"},
{"set": "INCLUDE_FROB", "value": "0"},
{"cmd": ["pkg-config", "--cflags", "foo"], "to_var": "CFLAGS"},
{"cmd": ["./configure", "--prefix=$ARTIFACT", "--foo-setting=$FOO"]}
{"cmd": ["bash", "$in0"],
"inputs": [

{"text": [
"["$RUN_FOO" != ""] && ./foo"
"make",
"make install"

]}
}

],
}

Job spec root node

The root node is also a command node, as described below, but has two extra allowed keys:

import: The artifacts needed in the environment for the run. After the job has run they have no effect (i.e., they do
not affect garbage collection or run-time dependencies of a build, for instance). The list is ordered and earlier
entries are imported before latter ones.

2.3. HashDist API reference 23

HashDist Documentation, Release 0.3

• id: The artifact ID. If the value is prepended with "virtual:", the ID is a virtual ID, used so that the
real one does not contribute to the hash. See section on virtual imports below.

• ref: A name to use to inject information of this dependency into the environment. Above, $ZLIB_DIR
will be the absolute path to the zlib artifact, and $ZLIB_ID will be the full artifact ID. This can be set
to None in order to not set any environment variables for the artifact.

When executing, the environment is set up as follows:

• Environment is cleared (os.environ has no effect)

• The initial environment provided by caller (e.g., BuildStore provides $ARTIFACT and $BUILD) is loaded

• The import section is processed

• Commands executed (which may modify env)

Command node

The command nodes is essentially a script language, but lacks any form of control flow. The purpose is to control the
environment, and then quickly dispatch to a script in a real programming language.

Also, the overall flow of commands to set up the build environment are typically generated by a pipeline from a
package definition, and generating a text script in a pipeline is no fun.

See example above for basic script structure. Rules:

• Every item in the job is either a cmd or a commands or a hit, i.e. those keys are mutually exclusive and defines
the node type.

• commands: Push a new environment and current directory to stack, execute sub-commands, and pop the stack.

• cmd: The list is passed straight to subprocess.Popen() as is (after variable substitution). I.e., no quoting,
no globbing.

• hit: executes the hit tool in-process. It acts like cmd otherwise, e.g., to_var works.

• chdir: Change current directory, relative to current one (same as modifying PWD environment variable)

• set, prepend/append_path, prepend/append_flag: Change environment variables, inserting the value speci-
fied by the value key, using variable substitution as explained below. set simply overwrites variable, while
the others modify path/flag-style variables, using the os.path.patsep for prepend/append_path and a space for
prepend/append_flag. NOTE: One can use nohash_value instead of value to avoid the value to enter the hash
of a build specification.

• files specifies files that are dumped to temporary files and made available as $in0, $in1 and so on. Each file has
the form {typestr: value}, where typestr means:

– text: value should be a list of strings which are joined by newlines

– string: value is dumped verbatim to file

– json: value is any JSON document, which is serialized to the file

• stdout and stderr will be logged, except if to_var or append_to_file is present in which case the stdout is capture
to an environment variable or redirected in append-mode to file, respectively. (In the former case, the resulting
string undergoes strip(), and is then available for the following commands within the same scope.)

• Variable substitution is performed the following places: The cmd, value of set etc., chdir argument, std-
out_to_file. The syntax is $CFLAGS and ${CFLAGS}. \$ is an escape for $, \ is an escape for \, other
escapes not currently supported and \ will carry through unmodified.

24 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

For the hit tool, in addition to what is listed in hit --help, the following special command is available for inter-
acting with the job runner:

• hit logpipe HEADING LEVEL: Creates a new Unix FIFO and prints its name to standard output (it will
be removed once the job terminates). The job runner will poll the pipe and print anything written to it nicely
formatted to the log with the given heading and log level (the latter is one of DEBUG, INFO, WARNING, ERROR).

Note: hit is not automatically available in the environment in general (in launched scripts etc.), for that, see
hashdist.core.hit_recipe. hit logpipe is currently not supported outside of the job spec at all (this
could be supported through RPC with the job runner, but the gain seems very slight).

Virtual imports

Some times it is not desirable for some imports to become part of the hash. For instance, if the cp tool is used in the
job, one is normally ready to trust that the result wouldn’t have been different if a newer version of the cp tool was
used instead.

Virtual imports, such as virtual:unix in the example above, are used so that the hash depends on a user-defined
string rather than the artifact contents. If a bug in cp is indeed discovered, one can change the user-defined string (e.g,
virtual:unix/r2) in order to change the hash of the job desc.

Note: One should think about virtual dependencies merely as a tool that gives the user control (and responsibility)
over when the hash should change. They are not the primary mechanism for providing software from the host; though
software from the host will sometimes be specified as virtual dependencies.

Reference

class hashdist.core.run_job.CommandTreeExecution(logger, temp_dir=None, debug=False,
debug_shell=’/bin/bash’)

Class for maintaining state (in particular logging pipes) while executing script. Note that the environment is
passed around as parameters instead.

Executing run() multiple times amounts to executing different variable scopes (but with same logging pipes
set up).

Parameters logger : Logger

rpc_dir : str

A temporary directory on a local filesystem. Currently used for creating pipes with the
“hit logpipe” command.

Methods

close()
Removes log FIFOs; should always be called when one is done

dump_inputs(inputs, node_pos)
Handles the ‘inputs’ attribute of a node by dumping to temporary files.

Returns A dict with environment variables that can be used to update ‘env‘, :

containing ‘‘$in0‘‘, ... :

2.3. HashDist API reference 25

HashDist Documentation, Release 0.3

logged_check_call(args, env, stdout_to)
Similar to subprocess.check_call, but multiplexes input from stderr, stdout and any number of log FIFO
pipes available to the called process into a single Logger instance. Optionally captures stdout instead of
logging it.

run_hit(args, env, stdout_to=None)
Run hit in the same process.

But do not emit INFO-messages from sub-command unless level is DEBUG.

run_node(node, env, node_pos)
Executes a script node and its children

Parameters node : dict

A command node

env : dict

The environment (will be modified). The PWD variable tracks working directory and
should always be set on input.

node_pos : tuple

Tuple of the “path” to this command node; e.g., (0, 1) for second command in first
group.

hashdist.core.run_job.canonicalize_job_spec(job_spec)
Returns a copy of job_spec with default values filled in.

Also performs a tiny bit of validation.

hashdist.core.run_job.handle_imports(logger, build_store, artifact_dir, virtuals, job_spec)
Sets up environment variables for a job. This includes $MYIMPORT_DIR, $MYIMPORT_ID, $ARTIFACT,
$HDIST_IMPORT, $HDIST_IMPORT_PATHS.

Returns env : dict

Environment containing HDIST_IMPORT{,_PATHS} and variables for each import.

script : list

Instructions to execute; imports first and the job_spec commands afterwards.

hashdist.core.run_job.run_job(logger, build_store, job_spec, override_env, artifact_dir, virtuals,
cwd, config, temp_dir=None, debug=False)

Runs a job in a controlled environment, according to rules documented above.

Parameters logger : Logger

build_store : BuildStore

BuildStore to find referenced artifacts in.

job_spec : document

See above

override_env : dict

Extra environment variables not present in job_spec, these will be added last and over-
write existing ones.

artifact_dir : str

The value $ARTIFACT should take after running the imports

virtuals : dict

26 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

Maps virtual artifact to real artifact IDs.

cwd : str

The starting working directory of the job. Currently this cannot be changed (though a
cd command may be implemented in the future if necesarry)

config : dict

Configuration from hashdist.core.config. This will be serialied and put into
the HDIST_CONFIG environment variable for use by hit.

temp_dir : str (optional)

A temporary directory for use by the job runner. Files will be left in the dir after execu-
tion.

debug : bool

Whether to run in debug mode.

Returns out_env: dict :

The environment after the last command that was run (regardless of scoping/nesting).
If the job spec is empty (no commands), this will be an empty dict.

hashdist.core.run_job.substitute(x, env)
Substitute environment variable into a string following the rules documented above.

Raises KeyError if an unreferenced variable is not present in env ($$ always raises KeyError)

hashdist.spec.profile — HashDist Profiles

Not supported:

• Diamond inheritance

class hashdist.spec.profile.FileResolver(checkouts_manager, search_dirs)
Find spec files in an overlay-based filesystem, consulting many search paths in order. Supports the
<repo_name>/some/path-convention.

Methods

find_file(filenames)
Search for a file.

Search for a file with the given filename/path relative to the root of each of self.search_dirs.

Parameters filenames : list of strings

Filenames to seach for. The entire list will be searched before moving on to the next
layer/overlay.

Returns Returns the found file (in the :

‘‘<repo_name>/some/path‘‘-convention), or None if no file was :

found. :

glob_files(patterns, match_basename=False)
Match file globs.

2.3. HashDist API reference 27

HashDist Documentation, Release 0.3

Like find_file, but uses a set of patterns and tries to match each pattern against the filesystem using
glob.glob.

Parameters patterns : list of strings

Glob patterns

match_basename : boolean

If match_basename is set, only the basename of the file is compared (i.e., one file
with each basename will be returned).

Returns The result is a dict mapping the “matched name” to a pair :

(pattern, full qualified path). :

* The matched name is a path relative to root of overlay :

(required to be unique) or just the basename, depending on match_basename.

* The pattern returned is the pattern that whose match gave :

rise to the “matched path” key.

* The full qualified name is the filename that was mattched by :

the pattern.

class hashdist.spec.profile.PackageYAML(used_name, filename, parameters, in_directory)
Holds content of a package yaml file

The content is unmodified except for {{VAR}} variable expansion.

Attributes

doc dict The deserialized yaml source
in_directory boolean Whether the yaml file is in its private package directory that may contain

other files.
parameters dict of str Parameters with the defaults from the package yaml file applied
filename str Full qualified name of the package yaml file
hook_filename str or

None
Full qualified name of the package .py hook file, if it exists.

dirname
Name of the package directory.

Returns String, full qualified name of the directory containing the :

yaml file. :

Raises A ‘‘ValueError‘‘ is raised if the package is a stand-alone :

yaml file, that is, there is no package directory. :

class hashdist.spec.profile.Profile(logger, doc, checkouts_manager)
Profiles acts as nodes in a tree, with extends containing the parent profiles (which are child nodes in a DAG).

Methods

find_package_file(pkgname, filename)
Find a package resource file.

28 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

Search for the file at:

•$pkgs/filename,

•$pkgs/pkgname/filename,

in this order.

Parameters pkgname : string

Name of the package (excluding .yaml).

filename : string

File name to look for.

Returns The full qualifiedfilename as a string, or ‘‘None‘‘ if no file :

is found. :

load_package_yaml(pkgname, parameters)
Search for the yaml source and load it.

Load the source for pkgname (after substitution by a use: profile section, if any) from either

•$pkgs/pkgname.yaml,

•$pkgs/pkgname/pkgname.yaml, or

•$pkgs/pkgname/pkgname-*.yaml

by searching through the paths in the package_dirs: profile setting. The paths are searched or-
der, and only the first match per basename is used. That is, $pkgs/foo/foo.yaml overrides
$pkgs/foo.yaml. And $pkgs/foo/foo-bar.yaml is returned in addition.

In case of many matches, any when’-clause is evaluated on parameters and a single document should
result, otherwise an exception is raised. A document without a when-clause is overridden by those with a
when-clause.

Parameters pkgname : string

Name of the package (excluding .yaml).

parameters : dict

The profile parameters.

Returns A :class:‘PackageYAML‘ instance if successfull. :

Raises * class:‘~hashdist.spec.exceptions.ProfileError‘‘ is raised if :

there is no such package.

* class:‘~hashdist.spec.exceptions.PackageError‘‘ is raised if :

a package conflicts with a previous one.

resolve(path)
Turn <repo>/path into /tmp/foo-342/path

class hashdist.spec.profile.TemporarySourceCheckouts(source_cache)
A context that holds a number of sources checked out to temporary directories until it is released.

2.3. HashDist API reference 29

HashDist Documentation, Release 0.3

Methods

resolve(path)
Expand path-names of the form <repo_name>/foo/bar, replacing the <repo_name> part (where
repo_name is given to checkout, and the < and > are literals) with the temporary checkout of the given
directory.

hashdist.spec.profile.load_and_inherit_profile(checkouts, include_doc, cwd=None,
override_parameters=None)

Loads a Profile given an include document fragment, e.g.:

file: ../foo/profile.yaml

or:

file: linux/profile.yaml
urls: [git://github.com/hashdist/hashstack.git]
key: git:5aeba2c06ed1458ae4dc5d2c56bcf7092827347e

The load happens recursively, including fetching any remote dependencies, and merging the result into this
document.

cwd is where to interpret file in include_doc relative to (if it is not in a temporary checked out source). It can
use the format of TemporarySourceCheckouts, <repo_name>/some/path.

2.3.2 Support code

hashdist.core.hasher – Utilities for hashing

class hashdist.core.hasher.DocumentSerializer(wrapped)
Stable non-Python-specific serialization of nested objects/documents. The primary usecase is for hashing (see
Hasher), and specifically hashing of JSON documents, thus no de-serialization is implemented. The idea is
simply that by hashing a proper serialization format we ensure that we don’t weaken the hash function.

The API used is that of hashlib (i.e. an update method).

A core goal is that it should be completely stable, and easy to reimplement in other languages. Thus we stay
away from Python-specific pickling mechanisms etc.

Supported types: Basic scalars (ints, floats, True, False, None), bytes, unicode, and buffers, lists/tuples and dicts.

Additionally, when encountering user-defined objects with the get_secure_hash method, that method is
called and the result used as the “serialization”. The method should return a tuple (type_id, secure_hash); the
former should be a string representing the “type” of the object (often the fully qualified class name), in order to
avoid conflicts with the hashes of other objects, and the latter a hash of the contents.

The serialization is “type-safe” so that "3" and 3 and 3.0 will serialize differently. Lists and tuples are treated
as the same ((1,) and [1] are the same) and buffers, strings and Unicode objects (in their UTF-8 encoding)
are also treated the same.

Note: Currently only string keys are supported for dicts, and the items are serialized in the order of the keys.
This is because all Python objects implement comparison, and comparing by arbitrary Python objects could lead
to easy misuse (hashes that are not stable across processes).

One could instead sort the keys by their hash (getting rid of comparison), but that would make the hash-stream
(and thus the unit tests) much more complicated, and the idea is this should be reproducible in other languages.
However that is a possibility for further extension, as long as string keys are treated as today.

30 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

In order to prevent somebody from constructing colliding documents, each object is hashed with an envelope
specifying the type and the length (in number of items in the case of a container, or number of bytes in the case
of str/unicode/buffer).

In general, see unit tests for format examples/details.

Parameters wrapped : object

wrapped.update is called with strings or buffers to emit the resulting stream (the API of
the hashlib hashers)

Methods

class hashdist.core.hasher.Hasher(x=None)
Cryptographically hashes buffers or nested objects (“JSON-like” object structures). See
DocumentSerializer for more details.

This is the standard hashing method of HashDist.

Methods

format_digest()
The HashDist standard digest.

class hashdist.core.hasher.HashingReadStream(hasher, stream)
Utility for reading from a stream and hashing at the same time.

Methods

class hashdist.core.hasher.HashingWriteStream(hasher, stream)
Utility for hashing and writing to a stream at the same time. The stream may be None for convenience.

Methods

hashdist.core.hasher.check_no_floating_point(doc)
Verifies that the document doc does not contain floating-point numbers.

hashdist.core.hasher.format_digest(hasher)
The HashDist standard format for encoding hash digests

This is one of the cases where it is prudent to just repeat the implementation in the docstring:

base64.b32encode(hasher.digest()[:20]).lower()

Parameters hasher : hasher object

An object with a digest method (a Hasher or an object from the hashlib module)

hashdist.core.hasher.hash_document(doctype, doc)
Computes a hash from a document. This is done by serializing to as compact JSON as possible with sorted keys,
then perform sha256 an. The string {doctype}| is prepended to the hashed string and serves to make sure
different kind of documents yield different hashes even if they are identical.

Some unicode characters have multiple possible code-points, so that this definition; however, this should be
considered an extreme corner case. In general it should be very unusual for hashes that are publicly shared/moves

2.3. HashDist API reference 31

HashDist Documentation, Release 0.3

beyond one computer to contain anything but ASCII. However, we do not enforce this, in case one wishes to
encode references in the local filesystem.

Floating-point numbers are not supported (these have multiple representations).

hashdist.core.hasher.prune_nohash(doc)
Returns a copy of the document with every key/value-pair whose key starts with ’nohash_’ is removed.

hashdist.core.links — Link creation tool

execute_links_dsl() takes a set of rules in a mini-language and uses it to create (a potentially large number
of) links.

The following rules creates links to everything in “/usr/bin”, except for “/usr/bin/gcc-4.6” which is copied (though it
could be achieved more easily with the overwrite flag):

[
{
"action": "copy",
"source": "/usr/bin/gcc-4.6",
"target": "$ARTIFACT/bin/gcc-4.6"

},
{
"action": "exclude",
"select": ["/usr/bin/gcc-4.6", "/something/else/too/**"]

},
{
"action": "symlink",
"select": "/usr/bin/*",
"prefix": "/usr",
"target": "$ARTIFACT"

}

]

Rules are executed in order. If a target file already exists, nothing happens.

action: One of “symlink”, “absolute_symlink”, “relative_symlink”, “copy”, “exclude”, “launcher”. Other types may
be added later.

• absolute_symlink creates absolute symlinks. Just symlink is an alias for absolute symlink.

• relative_symlink creates relative symlinks

• copy copies contents and mode (shutil.copy)

• exclude makes sure matching files are not considered in rules below

• launcher, see make_launcher()

select, prefix: select contains glob of files to link/copy/exclude. This is in ant-glob format (see
hashdist.core.ant_glob). If select is given and action is not exclude, one must also supply a prefix
(possibly empty string) which will be stripped from each matching path, before recreating the same hierarchy
beneath target.

Variable substitution is performed both in select and prefix. select and prefix should either both be absolute paths
or both be relative paths

source: Provide an exact filename instead of a glob. In this case target should refer to the exact filename of the
resulting link/copy.

target: Target filename (source is used) or directory (select is used). Variable substitution is performed.

32 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

dirs: If present and True, symlink matching directories, not only files. Only takes effect for select; source always
selectes dirs.

overwrite: If present and True, overwrite target.

hashdist.core.links.dry_run_links_dsl(rules, env={})
Turns a DSL for creating links/copying files into a list of actions to be taken.

This takes into account filesystem contents and current directory at the time of call.

See execute_links_dsl() for information on the DSL.

Parameters rules : list

List of rules as described in execute_links_dsl().

env : dict

Environment to use for variable substitution

Returns actions : list

What actions should be performed as a list of (func,) + args_to_pass, where func is one
of os.symlink, silent_makedirs(), shutil.copyfile.

hashdist.core.links.execute_links_dsl(rules, env={}, launcher_program=None, log-
ger=None)

Executes the links DSL for linking/copying files

The input is a set of rules which will be applied in order. The rules are documented above.

Parameters spec : list

List of rules as described above.

env : dict

Environment to use for variable substitution.

launcher_program : str or None

If the ‘launcher’ action is used, the path to the launcher executable must be provided.

logger : Logger or None (default)

hashdist.core.links.make_launcher(src, dst, launcher_program)
The ‘launcher’ action. This is a general tool for processing bin-style directories where the binaries must have a
“fake” argv[0] target (read: Python). The action depends on the source type:

program (i.e., executable not starting with #!): Set up as symlink to “launcher”, which is copied into same
directory; and “$dst.link” is set up to point relatively to “$src”.

symlink: Copy it verbatim. Thus, e.g., python -> python2.7 will point to the newly, “launched-ified”
python2.7.

other (incl. scripts): Symlink relatively to it.

hashdist.core.ant_glob – ant-inspired globbing

hashdist.core.ant_glob.ant_iglob(pattern, cwd=’‘, include_dirs=True)
Generator that iterates over files/directories matching the pattern.

The syntax is ant-glob-inspired but currently only a small subset is implemented.

Examples:

2.3. HashDist API reference 33

HashDist Documentation, Release 0.3

*.txt # matches "a.txt", "b.txt"
foo/**/bar # matches "foo/bar" and "foo/a/b/c/bar"
foo*/**/*.bin # matches "foo/bar.bin", "foo/a/b/c/bar.bin", "foo3/a.bin"

Illegal patterns:

foo/**.bin # '**' can only match 0 or more entire directories

Parameters pattern : str or list

Glob pattern as described above. If a str, will be split by /; if a list, each item is a path
component. It is only possible to specify a non-relative glob if pattern is a string.

cwd : str

Directory to start in. Pass an empty string or ‘.’ for current directory; the former
will emit ‘rel/path/to/file’ while the latter ‘./rel/path/to/file’. (This added complexity
is present in order to be able to reliably match prefixes by string value).

include_dirs : bool

Whether to include directories, or only glob files.

hashdist.core.ant_glob.has_permission(path)
Returns True if we have ‘listdir’ permissions. False otherwise.

2.4 Plans for HashDist

2.4.1 HashDist core components

Source store

The idea of the source store is to help download source code from the net, or “upload” files from the local disk. Items
in the store are identified with a cryptographic hash.

Items in the source store are only needed for a few hours while the build takes place, and that may be the default
configuration for desktop users. However, an advantage of keeping things around forever is to always be able to
redo an old build without relying on third parties. Also, if many users share a source store on the local network one
can reduce the average time spent waiting for downloads. This is an aspect that will be very different for different
userbases.

Here’s how to fetch some sources; the last line output (only one to stdout) is the resulting key:

$ hit fetch http://python.org/ftp/python/2.7.3/Python-2.7.3.tar.bz2
Downloading... progress indicator ...
Done
targz:mheIiqyFVX61qnGc53ZhR-uqVsY

$ hit fetch git://github.com/numpy/numpy.git master
Fetching ...
Done
git:c5ccca92c5f136833ad85614feb2aa4f5bd8b7c3

One can then unpack results later only by using the key:

$ hit unpack targz:mheIiqyFVX61qnGc53ZhR-uqVsY src/python
$ hit unpack git:c5ccca92c5f136833ad85614feb2aa4f5bd8b7c3 numpy

34 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

While targz: and git: is part of the key, this is simply to indicate (mostly to humans) where the sources originally
came from, and not a requirement of the underlying source store implementation.

Note that git source trees are simply identified by their git commits, not by an additional “repository name” or similar
(the simplest implementation of this is to pull all git objects into the same local repository).

Re-fetching sources that are in cache already are not downloaded and results in the same hash:

$ hit fetch http://python.org/ftp/python/2.7.3/Python-2.7.3.tar.bz2
targz:mheIiqyFVX61qnGc53ZhR-uqVsY

It’s assumed that the content under the URL will not change (at least by default). Downloading the same content from
a different URL leads to de-duplication and the registration of an additional URL for that source.

Finally it’s possible to store files from the local filesystem:

$ hit fetch /home/dagss/code/fooproject
dir:lkQYr_eQ13Sra5EYoXTg3c8msXs
$ hit fetch -ttransient /home/dagss/code/buildfoo.sh
file:tMwPj0cxhQVsA1pncZKcwCMgVbU

This simply copies files from local drive (mainly to make sure a copy is preserved in pristine condition for inspection
if a build fails).

Tags: The -ttransient option was used above to tag the buildfoo.sh script, meaning it’s not likely to be
important (or is archived by other systems on local disk) so just keep it for a few days. In general we have a system of
arbitrary tags which one can then make use of when configuring the GC.

Artifact builder

Assume in ~/.hashdistrc:

[builder]
store = ~/.hashdist/artifacts

The builder is responsible for executing builds, under the following conditions:

• The builder will not recurse to build a dependency. All software dependencies are assumed to have been built
already (or be present on the host system).

• All sources, scripts etc. has been downloaded/uploaded to the source store

Invoking a build:

$ hit build < buildspec.json
Not present in store, need to build. Follow log with

tail -f /home/dagss/.hashdist/artifacts/numpy/2.6/_build0/build.log

Done building, artifact name:
numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo

$ hit resolve numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo
/home/dagss/.hashdist/artifacts/numpy/2.6/Ymm0C_HRoH0HxNM9snC3lvcIkMo

The build specification may look like this for a build:

{
"name" : "numpy",
"version" : "1.6",
"build-dependencies" : {

2.4. Plans for HashDist 35

HashDist Documentation, Release 0.3

"blas" : "ATLAS-3.10.0-gijMQibuq39SCBQfy5XoBeMSQKw",
"gcc" : "gcc-4.6.3-A8x1ZV5ryXvVGLUwoeP2C01LtsY",
"python" : "python-2.7-io-lizHjC4h8z5e2Q00Ag9xUvus",
"bash" : "python-4.2.24.1-Z8GcCVzYOOH97n-ZC6qhfQhciCI"

},
"sources" : {

"numpy" : "git:c5ccca92c5f136833ad85614feb2aa4f5bd8b7c3",
"build.sh" : "file:gijMQibuq39SCBQfy5XoBeMSQKw",

},
"command" : ["$bash/bin/bash", "build.sh"],
"env" : {

"NUMPYLAPACKTYPE" : "ATLAS"
},
"env_nohash" : {

"MAKEFLAGS" : "-j4",
},
"parameters" : [

"this is free-form json", "build script can parse this information",
"and use it as it wants"

],
"parameters_nohash" : {

"again-we-have" : ["custom", "json"]
}

}

What happens:

1. A hash is computed of the contents of the build specification. This is simple since all dependencies are given in
terms of their hash. Then, look up in the store; if found, we are done. (Dictionaries are supposed to be unordered
and sorted prior to hashing.)

2. Let’s assume the artifact doesn’t exist. A temporary directory is created for the build using mkdtemp (this is
important so that there’s no races if two people share the store and attempt the same build at the same time; the
directory is moved atomically to its final location after the build).

3. chdir to that directory, redirect all output to build.log, and store the build spec as build.json. Unpack
the sources listed using the equivalent of hit unpack. The result in this case is a numpy subdirectory with
the git checkout, and a build.sh script.

4. Set environment variables (as documented elsewhere, TBD). The keys in the build-
dependencies section maps to environment variable names, so that $blas will con-
tain ATLAS-3.10.0-gijMQibuq39SCBQfy5XoBeMSQKw and $blaspath will contain
../../ATLAS/3.10.0/gijMQibuq39SCBQfy5XoBeMSQKw. This is the sole purpose of the keys
in the build-dependencies section. (Build scripts may also choose to parse build.json too instead of relying
on the environment.).

5. Set up a sandbox environment. The sandboxing should be the topic of another section.

6. Execute the given command. The command must start with a variable substitution of one of the dependencies
listed, unless it is hit. (The bootstrapping problem this creates should be treated in another section.)

Build policy

It’s impossible to control everything, and one needs to trust the builds that are being run that they will produce the
same output given the same input. The hit build tool is supposed to be a useful part in bigger stack, and that
bigger stack is what needs to make the tradeoffs between fidelity and practicality.

One example of this is the X_nohash options, which provide for passing options that only controls how things are

36 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

built, not what, so that two builds with different such entries will have the same artifact hash in the end. The builder
neither encourages nor discourages the use of these options; that decision can only be made by the larger system
considering a specific userbase.

Build environment and helpers

A set of conventions and utilities are present to help build scripts.

Dependency injection

Builds should never reach out and detect settings or software (except for very special bootstrapping packages), they
should always get the artifacts of all dependencies injected through build.json.

This is largely something we cannot enforce and where one relies on sane use of the system.

(Nix builds its own toolchain in order to strictly enforce this, we consider that a too high cost to pay.)

Temporary build profiles

If one calls hit makebuildprofile build.json, then build.json is parsed and a profile environment
created containing all build dependencies, whose path is then printed to standard output. Thus one can hand a single
set of paths to ones scripts rather than one path per dependency.

This isn’t necesarrily a recommended mode of working, but “practicality beats purity”. If it’s equally easy to pass in
all dependencies explicitly to the configuration phase, then please do that.

Sandboxing

By setting LD_PRELOAD it is possible to override libc.so and filter all filesystem calls in order to create a sandbox
and make sure that the build does not read from /usr (or anywhere outside the HashDist store, except through
symlinks), which would indicate that the build reaches out to pull stuff it shouldn’t. The Grand Unified Builder (GUB)
takes this approach.

We may provide a hit sandbox command to do this. One may either want to turn that one for debugging, or all
the time. One may have to create wrappers scripts around gcc etc. to set up sandboxing since some build tools like
waf and scons like to control all the environment variables during the build.

Scheduler

To do many build artifacts in the right order (and in parallel in the right way), we should include a basic job scheduler
for doing downloading and building. Say, hit runtasks tasks.json, with tasks.json thus:

{
"numpysources" : {

"type" : "fetch",
"url" : "git://github.com/numpy/numpy.git"
"hash" : "git:9c5a9226e7d742e3549d4e53d07d53517096f123"

},
"numpy" : {

"type" : "build",
"ncores" : 1,
"body" : {

"name" : "numpy",

2.4. Plans for HashDist 37

HashDist Documentation, Release 0.3

"dependencies" : {
"blas" : "$atlas"
...

},
"sources" : {

"numpy" : "git:9c5a9226e7d742e3549d4e53d07d53517096f123"
}

}
}
"atlas" : {

"type" : "build",
"exclusive" : true,
...

}

Open question: Support the "$atlas" notation used above, or require that the hash for the atlas build section is
computed and use that? Probably the latter?

Profile tools

A (software) “profile” is a directory structure ready for use through $PATH, containing subdirectories bin, lib, and
so on which links all the software in a given software stack/profile.

Creating a profile is done by:

hit makeprofile /home/dagss/profiles/myprofile numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo ...

The command takes a list of artifacts, and reads install.json in each one and use the information to generate the
profile. While the install.json file is generated during the build process, the Builder component has no direct
knowledge of it, and we document it below.

Profiles are used as follows:

Simply print environment changes needed for my current shell
$ hit env /home/dagss/profiles/myprofile
export PATH="/home/dagss/profiles/myprofile/bin:$PATH"

Start new shell of the default type with profile
$ hit shell /home/dagss/profiles/myprofile

Import settings to my current shell
$ source <(hit env /home/dagss/profiles/myprofile)

Of course, power users will put commands using these in their ~/.bashrc or similar.

install.json

The install.json file is located at the root of the build artifact path, and should be generated (by packages meant
to be used by the profile component) as part of the build.

Packages have two main strategies for installing themselves into a profile:

• Strongly recommended: Do an in-place install during the build, and let the installation phase consist of setting
up symlinks in the profile

• Alternatively: Leave the build as a build-phase, and run the install at profile creation time

38 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

The reason for the strong recommendation is that as part of the build, a lot of temporary build profiles may be created
(hit makebuildprofile). Also, there’s the question of disk usage. However, distributions that are careful about
constructing builds with full dependency injection may more easily go for the second option, in particular if the system
is intended to create non-artifact profiles (see below).

The recommended use of install.json is:

{
"runtime-dependencies" : {

"python" : "python-2.7-io-lizHjC4h8z5e2Q00Ag9xUvus",
"numpy" : "numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo"

},
"command" : ["hit", "install-artifact"],
"profile-env-vars" : {

"FOO_SOFT_TYPE" : "FROBNIFICATOR",
},
"parameters" : {

"rules" : [
["symlink", "**"], # ant-style globs
["copy", "/bin/i-will-look-at-my-realpath-and-act-on-it"],
"/build.json", "/install.json" excluded by default

]
}

}

(In fact, python is one such binary that benefits from being copied rather than symlinked.) However, one may also
do the discouraged version:

{
"runtime-dependencies" : {

"python" : "python-2.7-io-lizHjC4h8z5e2Q00Ag9xUvus",
"numpy" : "numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo"

},
"command" : ["$python/bin/python", "setup.py", "install", "--prefix=$profiletarget"],
"parameters" : {

"free-form" : ["json", "again", "; format is determined by command in question"]
}

}

More points:

• The runtime-dependencies are used during the hit makeprofile process to recursively include dependen-
cies in the profile.

• The profile-env-vars are exported in the hit env. This happens through a profile.json that is written to
the profile directory by hit makeprofile. This can be used to, e.g., set up PYTHONPATH to point directly
to artifacts rather than symlinking them into the final profile.

• install.json does not need to be hashed at any point.

Artifact profiles vs. non-artifact profiles

Usually, one will want to run hashdist makeprofile as part of a build, so that the profile itself is cached:

{
"name" : "profile",
"build-dependencies" : {

"numpy" : "numpy-2.6-Ymm0C_HRoH0HxNM9snC3lvcIkMo",
},

2.4. Plans for HashDist 39

HashDist Documentation, Release 0.3

"command" : ["hit", "makeprofile", "$numpy"],
}

Then, one force-symlinks to the resulting profile:

$ hit build < profile.json
profile-Z8GcCVzYOOH97n-ZC6qhfQhciCI
$ ln -sf $(hit resolve profile-Z8GcCVzYOOH97n-ZC6qhfQhciCI) /home/dagss/profiles/default

This allows atomic upgrades of a user’s profile, and leaves the possibility of instant rollback to the old profile.

However, it is possible to just create a profile directly. This works especially well together with the
--no-artifact-symlinks flag:

$ hit makeprofile --no-artifact-symlinks /path/to/profile artifact-ids...

Then one gets a more traditional fully editable profile, at the cost of some extra disk usage. One particular usage
simply clones a profile that has been built as an artifact:

$ hit makeprofile --no-artifact-symlinks /path/to/profile profile-Z8GcCVzYOOH97n-ZC6qhfQhciCI

This works because hit makeprofile emits an install.json that repeats the process of creating itself (profile
creation is idempotent, sort of).

The shared profile manager

To use a profile located in the current directory, ./myprofile must be used. Calling hit env myprofile
instead looks up a central list of profile nicknames. In ~/.hitconfig:

[hashdist]
profiles = ~/.hashdist/profiles # this is the default

...and following that, we find:

$ ls -la ~/.hashdist/profiles
myprofile -> /home/dagss/profiles/myprofile
qsnake -> /home/dagss/opt/qsnake
qsnake_previous -> ./artifacts/qsnakeprofile/0.2/io-lizHjC4h8z5e2Q00Ag9xUvus

(The paths in /home/dagss are likely further symlinks into ~/.hashdist/artifacts too, but which artifact
gets changed by the distribution). Distributions are encouraged to make use of this feature so that one can do:

$ hit shell sage
$ hit shell qsnake

...and so on. The intention is to slightly blur the line between different distributions; software distributions simply
become mechanisms to build profiles.

2.4.2 Installing HashDist for use in software distributions

Dependencies

HashDist depends on Python 2.6+.

A bootstrap script should be made to facilitate installation everywhere...

40 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

Bundling vs. sharing

HashDist (by which we mean both the library/programs and the source and build artifact directories on disk) can either
be shared between distributions or isolated; thus one may have build artifacts in ~/.hashdist which are shared
between PyHPC and QSnake, while Sage has its own HashDist store in ~/path/to/sage/store.

Note: The main point of sharing HashDist is actually to share it between different versions of the same distribution;
i.e., two different QSnake versions may be located in different paths on disk, but if they use the global HashDist they
will share the build artifacts they have in common.

Another advantage is simply sharing the source store among distributions which build many of the same source tarballs
and git repos.

Managing conflicting HashDist installations

By default, HashDist core tools are exposed through the hit command and the hashdist Python package. It is
configured through ~/.hitconfig:

[hashdist]
hit = ~/.hashdist/bin/hit
python2-path = ~/.hashdist/lib/python2

[sources]
store = ~/.hashdist/source
keep-transient = 1 week
keep-targz = forever
keep-git = forever

<...>

If a software distribution bundles its own isolated HashDist environment then the hit command should be rebranded
(e.g., qsnake-hit), and it should read a different configuration file. Similarly, the Python package should be
rebranded (e.g., qsnake.hashdist).

The command hit should always read ~/.hitconfig (or the configuration file specified on the command line)
and launch the command found there under the hit key. Similarly, import hashdist should add the package from
the location specified in the configuration file to sys.path and then do from hashdistlib import *. The
reason is simply that the paths mentioned in that file are managed by a particular version of hashdist, and we want an
upgrade path. Essentially, the hit command-line tool and the hashdist Python package are not part of the software
stack the distribution provides (unless rebranded). If you put an old, outdated profile in $PATH, the hit command
found in it will simply read ~/.hitconfig and then launch a newer version of hit. (However, qsnake-hit is
free to behave however it likes.)

The best way of distributing HashDist is in fact to get it through the operating system package manager. In that case,
the hit key in ~/.hitconfig will point to /usr/bin/hit. Alternatively, a bootstrapping solution is provided
and recommended which make sure that each distribution using a non-rebranded HashDist use the same one.

Bootstrap script

TODO

2.4. Plans for HashDist 41

HashDist Documentation, Release 0.3

2.4.3 Profile specification layer

Nobody wants to use the core tools directly and copy and paste artifact IDs (unless they are debugging and developing
packages). This layer is one example of an API that can be used to drive hit fetch, hit build and hit
makeprofile. Skipping this layer is encouraged if it makes more sense for your application.

Included: The ability to programatically define a desired software profile/”stack”, and automatically download and
build the packages with minimum hassle. Patterns for using the lower-level hit command (e.g., standardize on
symlink-based artifact profiles).

Excluded: Any use of package metadata or a central package repository to automatically resolve dependencies. (Some
limited use of metadata to get software versions and so on may still be included.)

This layer can be used in two modes:

• As an API to help implementing the final UI

• Directly by power-users who don’t mind manually specifying everything to great detail

The API will be demonstrated by an example from the latter usecase.

Package class

At the basic level, we provide utilites that knows how to build packages and inject dependencies. Under the hood this
happens by generating the necesarry JSON files (including the build setup, which is the hard part) and calling hit
build and hit makeprofile.

Note: This has some overlap with Buildout. We should investigate using the Buildout API for the various package
builders.

Warning: A lot in the below block is overly simplified in terms of what’s required for each package to build.
Consider it a sketch.

Assume one creates the following “profile-script” where pretty much everything is done manually:

import hashdist
from hashdist import package as pkg

from_host = pkg.UseFromHostPackage(['gcc', 'python', 'bash'])

ATLAS = pkg.ConfigureMakeInstallPackage('http://downloads.sourceforge.net/project/math-atlas/Stable/3.10.0/atlas3.10.0.tar.bz2',
build_deps=dict(gcc=from_host, bash=from_host))

numpy = pkg.DistutilsPackage('git://github.com/numpy/numpy.git',
build_deps=dict(python=from_host, gcc=from_host, blas=ATLAS),
run_deps=dict(python=from_host, blas=ATLAS),
ATLAS=ATLAS.path('lib'),
CFLAGS=['-O0', '-g'])

profile = hashdist.Profile([numpy])
hashdist.command_line(profile)

Everything here is lazy (one instantiates descriptors of packages only); each package object is immutable and just
stores information about what it is and describes the dependency DAG. E.g., ATLAS.path(’lib’) doesn’t actually
resolve any paths, it just returns a symbolic object which during the build will be able to resolve the path.

Running the script produces a command-line with several options, a typical run would be:

42 Chapter 2. Developer Resources

HashDist Documentation, Release 0.3

python theprofilescript.py update ~/mystack

This:

1. Walks the dependency DAG and for each component generates a build.json and calls hit build, often
hitting the cache

2. Builds a profile and does ln -sf to atomically update ~/mystack (which is a symlink).

Package repositories

Given the above it makes sense to then make APIs which are essentially package object factories, and which are aware
of various package sources. Like before, everything should be lazy/descriptive. Sketch:

import hashdist

the package environment has a list of sources to consider for packages;
which will be searched in the order provided
env = hashdist.PackageEnvironment(sources=[

hashdist.SystemPackageProvider('system'),
hashdist.SpkgPackageProvider('qsnake', '/home/dagss/qsnake/spkgs'),
hashdist.PyPIPackageProvider('pypi', 'http://pypi.python.org')

])

The environment also stores default arguments. env is immutable, so we
modify by making a copy
env = env.copy_with(CFLAGS=['-O0', '-g'])

Set up some compilers; insist that they are found on the 'system' source
(do not build them)
intel = env.pkgs.intel_compilers(from='system')
gcc = env.pkgs.gnu_compilers(from='system')

env.pkgs.__getattr__ "instantiates" software. The result is simply a symbolic
node in a build dependency graph; nothing is resolved until an actual build
is invoked
blas = env.pkgs.reference_blas(compiler=intel)
or: blas = env.pkgs.ATLAS(version='3.8.4', compiler=intel)
or: blas = env.pkgs.ATLAS(version='3.8.4', from='system',
libpath='/sysadmins/stupid/path/for/ATLAS')

python = env.pkgs.python()
petsc = env.pkgs.petsc(from='qsnake', blas=blas, compiler=intel)
petsc4py = env.pkgs.petsc4py(from='qsnake', petsc=petsc, compiler=gcc, python=python)
numpy = env.pkgs.numpy(python=python, blas=blas, compiler=intel, CFLAGS='-O2')
jinja2 = env.pkgs.jinja2(python=python)

profile = hashdist.profile([python, petsc, numpy, jinja2])
hashdist.command_line(profile)

2.4.4 User interface ideas

As mentioned on the Profile Specification Layer page, it lacks the ability to do automatic dependency resolution given
package metadata. That is some of what belongs on this level.

On the other hand, for some usecases the typical automatic solution is too much, and a more explicit and less traditional
model may be better.

2.4. Plans for HashDist 43

HashDist Documentation, Release 0.3

The explicit dict-of-git-repositories model

TODO

The package-repository and metadata-driven model

TODO

44 Chapter 2. Developer Resources

Python Module Index

h
hashdist.core.ant_glob, 33
hashdist.core.build_store, 19
hashdist.core.hasher, 30
hashdist.core.links, 32
hashdist.core.run_job, 23
hashdist.core.source_cache, 16
hashdist.spec.profile, 27

45

HashDist Documentation, Release 0.3

46 Python Module Index

Python Module Index

h
hashdist.core.ant_glob, 33
hashdist.core.build_store, 19
hashdist.core.hasher, 30
hashdist.core.links, 32
hashdist.core.run_job, 23
hashdist.core.source_cache, 16
hashdist.spec.profile, 27

47

HashDist Documentation, Release 0.3

48 Python Module Index

Index

A
ant_iglob() (in module hashdist.core.ant_glob), 33
assert_safe_name() (in module hashdist.core.build_store),

22

B
BuildSpec (class in hashdist.core.build_store), 21
BuildStore (class in hashdist.core.build_store), 21

C
canonicalize_build_spec() (in module

hashdist.core.build_store), 22
canonicalize_job_spec() (in module

hashdist.core.run_job), 26
check_no_floating_point() (in module

hashdist.core.hasher), 31
close() (hashdist.core.run_job.CommandTreeExecution

method), 25
CommandTreeExecution (class in hashdist.core.run_job),

25
create_from_config() (hashdist.core.build_store.BuildStore

static method), 22
create_from_config() (hashdist.core.source_cache.SourceCache

static method), 17
create_symlink_to_artifact()

(hashdist.core.build_store.BuildStore method),
22

D
delete() (hashdist.core.build_store.BuildStore method),

22
dirname (hashdist.spec.profile.PackageYAML attribute),

28
DocumentSerializer (class in hashdist.core.hasher), 30
dry_run_links_dsl() (in module hashdist.core.links), 33
dump_inputs() (hashdist.core.run_job.CommandTreeExecution

method), 25

E
ensure_present() (hashdist.core.build_store.BuildStore

method), 22

execute_links_dsl() (in module hashdist.core.links), 33

F
fetch() (hashdist.core.source_cache.SourceCache

method), 17
fetch_archive() (hashdist.core.source_cache.SourceCache

method), 18
fetch_git() (hashdist.core.source_cache.SourceCache

method), 18
FileResolver (class in hashdist.spec.profile), 27
find_file() (hashdist.spec.profile.FileResolver method),

27
find_package_file() (hashdist.spec.profile.Profile

method), 28
format_digest() (hashdist.core.hasher.Hasher method), 31
format_digest() (in module hashdist.core.hasher), 31

G
gc() (hashdist.core.build_store.BuildStore method), 22
glob_files() (hashdist.spec.profile.FileResolver method),

27

H
handle_imports() (in module hashdist.core.run_job), 26
has_permission() (in module hashdist.core.ant_glob), 34
hash_document() (in module hashdist.core.hasher), 31
hashdist.core.ant_glob (module), 33
hashdist.core.build_store (module), 19
hashdist.core.hasher (module), 30
hashdist.core.links (module), 32
hashdist.core.run_job (module), 23
hashdist.core.source_cache (module), 16
hashdist.spec.profile (module), 27
Hasher (class in hashdist.core.hasher), 31
HashingReadStream (class in hashdist.core.hasher), 31
HashingWriteStream (class in hashdist.core.hasher), 31
hit_pack() (in module hashdist.core.source_cache), 19
hit_unpack() (in module hashdist.core.source_cache), 19

49

HashDist Documentation, Release 0.3

L
load_and_inherit_profile() (in module

hashdist.spec.profile), 30
load_package_yaml() (hashdist.spec.profile.Profile

method), 29
logged_check_call() (hashdist.core.run_job.CommandTreeExecution

method), 25

M
make_artifact_dir() (hashdist.core.build_store.BuildStore

method), 22
make_build_dir() (hashdist.core.build_store.BuildStore

method), 22
make_launcher() (in module hashdist.core.links), 33

P
PackageYAML (class in hashdist.spec.profile), 28
Profile (class in hashdist.spec.profile), 28
ProgressSpinner (class in hashdist.core.source_cache), 17
prune_nohash() (in module hashdist.core.hasher), 32
put() (hashdist.core.source_cache.SourceCache method),

18

R
resolve() (hashdist.core.build_store.BuildStore method),

22
resolve() (hashdist.spec.profile.Profile method), 29
resolve() (hashdist.spec.profile.TemporarySourceCheckouts

method), 30
run_hit() (hashdist.core.run_job.CommandTreeExecution

method), 26
run_job() (in module hashdist.core.run_job), 26
run_node() (hashdist.core.run_job.CommandTreeExecution

method), 26

S
scatter_files() (in module hashdist.core.source_cache), 19
shorten_artifact_id() (in module

hashdist.core.build_store), 22
SourceCache (class in hashdist.core.source_cache), 17
strip_comments() (in module hashdist.core.build_store),

23
substitute() (in module hashdist.core.run_job), 27

T
TarSubprocessHandler (class in

hashdist.core.source_cache), 19
TemporarySourceCheckouts (class in

hashdist.spec.profile), 29

U
unpack() (hashdist.core.source_cache.SourceCache

method), 18

unpack_sources() (in module hashdist.core.build_store),
23

50 Index

	Working with HashDist
	Developer Resources
	Python Module Index
	Python Module Index

